Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
diffalg[is_orthonomic] - test if a characterizable differential ideal is presented by an orthonomic system of equations
Calling Sequence
is_orthonomic (J)
Parameters
J
-
characterizable differential ideal
Description
Important: The diffalg package has been deprecated. Use the superseding package DifferentialAlgebra instead.
The command is_orthonomic determines if the characteristic set defining J is orthonomic.
Characterizable differential ideal are constructed by using the Rosenfeld_Groebner command.
A characteristic set is orthonomic when its initials and separants belong to the ground field. It is the case if inequations(J) is empty.
Characterizable differential ideals given by orthonomic characteristic sets are prime differential ideal. The function Rosenfeld_Groebner recognizes and can take advantage of this fact.
If J is a radical differential ideal represented by a list of characterizable differential ideals, then the function is mapped on all its components.
Examples
See Also
diffalg(deprecated), diffalg(deprecated)/differential_algebra, diffalg(deprecated)/differential_ring, diffalg(deprecated)/Rosenfeld_Groebner, DifferentialAlgebra[Is]
Download Help Document