Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
SumTools[Hypergeometric][IsHolonomic] - test if a given bivariate hypergeometric term is holonomic
SumTools[Hypergeometric][IsProperHypergeometricTerm] - test if a given bivariate hypergeometric term is proper
Calling Sequence
IsHolonomic(T, n, k)
IsProperHypergeometricTerm(T, n, k)
Parameters
T
-
hypergeometric term of n and k
n
variable
k
Description
The IsProperHypergeometricTerm(T,n,k) command returns true if is a proper hypergeometric term. Otherwise, it returns false.
The IsHolonomic(T,n,k) command returns true if the bivariate hypergeometric term is holonomic. Otherwise, it returns false.
A bivariate hypergeometric term is proper if it can be written as where is a polynomial of n and k, and , are integers, and are non-negative integers, are complex numbers.
It can be shown that is proper if and only if it is holonomic.
Note: If is a proper hypergeometric term, the termination of Zeilberger's algorithm is guaranteed.
Examples
See Also
SumTools[Hypergeometric], SumTools[Hypergeometric][ConjugateRTerm], SumTools[Hypergeometric][IsHypergeometricTerm], SumTools[Hypergeometric][Zeilberger]
References
Abramov, S.A., and Petkovsek, M. "Proof of a Conjecture of Wilf and Zeilberger." Preprint series. Vol. 39. (2001): 748. University of Ljubljana, ISSN 1318--4865.
Download Help Document