Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
RegularChains[MatrixTools][MatrixInverse] - compute the inverse of a matrix modulo a regular chain
Calling Sequence
MatrixInverse(A, rc, R)
Parameters
A
-
square Matrix with coefficients in the ring of fractions of R
rc
regular chain of R
R
polynomial ring
Description
The command MatrixInverse(A, rc, R) returns two lists.
The first list the command returns is a list of pairs where is a regular chain and is the inverse of A modulo the saturated ideal of .
The second list the command returns is a list of triplets where is a regular chain and A is the input matrix such that A is not invertible modulo the saturated ideal of .
All the returned regular chains form a triangular decomposition of rc (in the sense of Kalkbrener).
It is assumed that rc is strongly normalized.
The algorithm is an adaptation of the algorithm of Bareiss.
This command is part of the RegularChains[MatrixTools] package, so it can be used in the form MatrixInverse(..) only after executing the command with(RegularChains[MatrixTools]). However, it can always be accessed through the long form of the command by using RegularChains[MatrixTools][MatrixInverse](..).
Examples
Automatic case discussion.
Assume we have two variables y and z that have the same square and z is a 4th root of -1. Suppose we need to compute modulo this relation.
We want to compute the inverse of the previous matrix.
Let us check the first result.
Consider now this other matrix.
Get a generic answer that would hold both cases.
Check.
See Also
Chain, Empty, Equations, IsStronglyNormalized, IsZeroMatrix, JacobianMatrix, LowerEchelonForm, MatrixCombine, MatrixMultiply, MatrixOverChain, MatrixTools, NormalForm, PolynomialRing, RegularChains
Download Help Document