Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
RegularChains[FastArithmeticTools][RegularGcdBySpecializationCube] - regular GCD of two polynomials modulo a regular chain
Calling Sequence
RegularGcdBySpecializationCube(f1, f2, rc, SCube, R)
Parameters
R
-
polynomial ring
f1
polynomial of R
f2
rc
regular chain
SCube
subresultant chain specialization cube
Description
The command RegularGcdBySpecializationCube returns a list of pairs where is a polynomial and is a regular chain such that the regular chains all together form a triangular decomposition of rc in the sense of Lazard, and each polynomial is a GCD of f1 and f2 modulo rc_i, for all . See the command RegularGcd for details on this notion of polynomial GCD modulo the saturated ideal of a regular chain.
f1 and f2 must have the same main variable v, with and , both regular w.r.t the saturated ideal of rc.
The resultant of f1 and f2 w.r.t. v must be null modulo the saturated ideal of rc.
R must have a prime characteristic such that FFT-based polynomial arithmetic can be used for this actual computation. The higher the degrees of f1 and f2 are, the larger must be such that divides . If the degree of f1 or f2 is too large, then an error is raised.
The algorithm implemented by the command RegularGcd is more general and does not require the latter two assumptions. However, when both commands can be used the command RegularGcdBySpecializationCube is very likely to outperform RegularGcd, since it relies on modular techniques and asymptotically fast polynomial arithmetic.
Examples
Define a ring of polynomials.
Define two polynomials of R.
Compute images of the subresultant chain of sufficiently many points in order to interpolate. Multi-dimensional TFT (Truncated Fourier Transform) is used to evaluate and interpolate since 1 is passed as fifth argument
Interpolate the resultant from the SCube
Define a regular chain with r2. Note that r2 is not required to be squarefree.
Compute a regular GCD of f1 and f2 modulo rc
See Also
RegularChains, RegularGcd, ResultantBySpecializationCube, SubresultantChainSpecializationCube
Download Help Document