Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
RegularChains[ChainTools][Construct] - constructs regular chains
Calling Sequence
Construct(p, rc, R)
Construct(p, rc, R, 'normalized'='yes')
Construct(p, rc, R, 'normalized'='strongly')
Parameters
p
-
polynomial of R
rc
regular chain of R
R
polynomial ring
'normalized'='yes'
(optional) boolean flag
'normalized'='strongly'
Description
The command Construct(p, rc, R) returns a list of regular chains which form a triangular decomposition of the regular chain obtained by extending rc with p.
This assumes that p is a non-constant with main variable greater than any algebraic variable of rc, and that the initial of p is regular modulo the saturated ideal of rc. Hence p and rc form together a regular chain.
Although rc with p is assumed to form a regular chain, several regular chains may be returned; this is because the polynomial p may be factorized with respect to rc in order to simplify the expressions in the regular chains .
Such factorizations will happen if they can be performed quickly. For instance, if p involves only one variable.
To avoid these possible factorizations, use RegularChains[ChainTools][Chain]
If 'normalized'='yes' is present, then rc must be normalized. In addition, every returned regular chain is normalized.
If 'normalized'='strongly' is present, then rc must be strongly normalized. In addition, every returned regular chain is strongly normalized.
This command is part of the RegularChains[ChainTools] package, so it can be used in the form Construct(..) only after executing the command with(RegularChains[ChainTools]). However, it can always be accessed through the long form of the command by using RegularChains[ChainTools][Construct](..).
Examples
See Also
Chain, ChainTools, Empty, Equations, ListConstruct, PolynomialRing, RegularChains
Download Help Document