Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
RegularChains[ParametricSystemTools][PreComprehensiveTriangularize] - compute a pre-comprehensive triangular decomposition
Calling Sequence
PreComprehensiveTriangularize(sys, d, R)
Parameters
sys
-
list of polynomials
d
number of parameters
R
polynomial ring
Description
The command PreComprehensiveTriangularize(sys, d, R) returns a pre-comprehensive triangular decomposition of sys, with respect to the last d variables of R.
A pre-comprehensive triangular decomposition is a refined triangular decomposition (in the Lazard sense) with additional properties, aiming at studying parametric polynomial systems.
Let be the last d variables of R, which we regard as parameters. A finite set of regular chains of R forms a pre-comprehensive triangular decomposition of F with respect to U, if for every parameter value , there exists a subset of such that
(1) the regular chains of specialize well at , and
(2) after specialization at , these chains form a triangular decomposition (in the Lazard sense) of the polynomial system specialized at . See the command DefiningSet for the term specialize well.
Examples
A pre-comprehensive triangular decomposition of consists of three regular chains.
Compare it with the output of Triangularize.
See Also
ComprehensiveTriangularize, ConstructibleSet, DefiningSet, DiscriminantSet, Info, RegularChains, Triangularize
Download Help Document