Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
RegularChains[ConstructibleSetTools][RationalMapPreimage] - compute the preimage of a variety under a polynomial map
Calling Sequence
RationalMapPreimage(F, RM, R, S)
RationalMapPreimage(F, H, RM, R, S)
RationalMapPreimage(CS, RM, R, S)
Parameters
F
-
list of polynomials of S
RM
a list of rational functions in R
R
a polynomial ring (source)
S
a polynomial ring (target)
H
list of polynomials
CS
constructible set
Description
The command RationalMapPreimage(F, RM, R, S) returns a constructible set cs over R. cs is the preimage of the variety under the rational map RM.
If H is specified, let be the variety defined by the product of polynomials in H. The command RationalMapPreimage(F, H, RM, R, S) returns the preimage of the constructible set - under the rational map RM.
The command RationalMapPreimage(CS, RM, R, S) returns the preimage of the constructible set CS under the rational map RM.
Both rings R and S should be over the same ground field.
The variable sets of R and S should be disjoint.
The number of rational functions in RM is equal to the number of variables of ring S.
Examples
Note that the rational map should be a list of rational functions of R. Also, the number of polynomials in RM equals the number of variables of S.
See Also
ConstructibleSet , Difference, MakePairwiseDisjoint, Projection , RationalMapImage, RegularChains
Download Help Document