Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
QDifferenceEquations[AccurateQSummation] - sum the solutions of a q-shift operator
Calling Sequence
AccurateQSummation(L, Q, x)
Parameters
L
-
polynomial in Q over C(q)(x)
Q
name; denote the q-shift operator
x
name (that Q acts on)
Description
This AccurateQSummation(L,Q,x) calling sequence computes an operator M of minimal order such that any solution of L has an anti-qdifference which is a solution of M.
If the order of L equals the order of M then the output is a list [M, r] such that r(f) is an anti-qdifference of and also a solution of M for every solution of L. If the order of L is not equal to M then only M is given in the output. In this case M equals where .
Q is the q-shift operator with respect to x, defined by .
Examples
Regarding the meaning of the second element rt in the output of AccurateQSummation, since is the minimal annihilator of , is an anti-qdifference of :
check that :
See Also
DEtools/integrate_sols, OreTools[Converters][FromPolyToOrePoly], OreTools[MathOperations][AccurateIntegration], OreTools[SetOreRing], SumTools[IndefiniteSum][AccurateSummation]
References
Abramov, S.A., and van Hoeij, M. "Integration of Solutions of Linear Functional Equations." Integral Transformations and Special Functions. Vol. 8 No. 1-2. (1999): 3-12.
Download Help Document