Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
OreTools[MathOperations][HilbertTwistReduction] - return isomorphic images of Ore polynomials under the Hilbert twist reduction
OreTools[MathOperations][InverseOfHilbertTwistReduction] - return pre-images of Ore polynomials under the HilbertTwistReduction
OreTools[MathOperations][AccurateIntegration] - check for the existence of a primitive element, and perform accurate integration
Calling Sequence
HilbertTwistReduction(P, A, 'B')
InverseOfHilbertTwistReduction(P, A)
AccurateIntegration(L, A)
Note: An Ore polynomial ring B is of Hilbert's twist type if its (pseudo) derivation maps everything to zero. For an Ore polynomial ring A with nontrivial automorphism, there is a ring isomorphism from A onto the ring B of Hilbert's twist type whose automorphism is the same as the A's. The isomorphism is called the Hilbert twist reduction.
Parameters
P
-
Ore polynomial or a list of Ore polynomials; to define an Ore polynomial, use the OrePoly structure.
L
Ore polynomial.
A
Ore ring with nontrivial automorphism; to define an Ore algebra, use the SetOreRing function.
B
(optional) unevaluated name.
Description
The HilbertTwistReduction(P, A, B) calling sequence returns the image of P under the Hilbert twist reduction. If the (optional) third argument B is present, it is assigned to the Ore ring whose automorphism is the same as the A's and whose (pseudo) derivation sends everything to zero.
The InverseOfHilbertTwistReduction(P, A) calling sequence returns the pre-image of P under the Hilbert twist reduction. Note that A is the source ring of the Hilbert twist reduction.
Let A be the shift, q-shift, or differential algebra. The AccurateIntegration(L, A) calling sequence performs accurate integration, which solves the following problem: Let y satisfy L(y)=0 and g satisfy lambda(g)=y, where lambda means the usual derivative in the differential case, the difference operator in the shift case, and the q-difference operator in the q-shift case. The function builds an annihilator S (represented as an OrePoly structure) for g of the same degree as that of L, and an operator K such that g=K(y) if both exist. Otherwise, it returns .
Examples
Define an Ore ring.
A := SetOreRing(n, 'difference', 'sigma' = proc(p, x) eval(p, x=x+1) end, 'sigma_inverse' = proc(p, x) eval(p, x=x-1) end, 'delta' = proc(p, x) eval(p, x=x+1) - p end, 'theta1' = 0);
Examples of AccurateIntegration:
See Also
OreTools, OreTools/OreAlgebra, OreTools/OrePoly, OreTools[MathOperations], OreTools[Properties], OreTools[SetOreRing]
References
Abramov, S.A., and van Hoeij, M. "Integration of Solutions of Linear Functional Equations." Integral Transformations and Special Functions. Vol. 8 No. 1-2. (1999): 3-12.
Download Help Document