Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
MTM[zeta] - the Riemann Zeta function
Calling Sequence
zeta(z)
zeta(n,z)
Parameters
z
-
algebraic expression
n
(optional) algebraic expression, understood to be a non-negative integer
Description
The zeta function is defined for Re(z)>1 by
and is extended to the rest of the complex plane (except for the point z=1) by analytic continuation. The point z=1 is a simple pole.
The call zeta(n, z) gives the nth derivative of the zeta function,
zeta(z) will evaluate by default only when the result is an exact value, or when the input z is a floating point number. When z is a symbolic expression, it will remain in function form so that it can be manipulated symbolically by itself or as part of a larger expression.
If z is an array or matrix, the result is an element-wise mapping over z.
Examples
See Also
MTM, Zeta
Download Help Document