Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
MTM[quorem] - polynomial quotient and remainder
Calling Sequence
q, r := quorem(A, B)
q, r := quorem(A, B, x)
Parameters
A
-
expression or array
B
q
variable
r
x
(optional) variable
Description
The quorem(A,B,x) function computes the element-wise quotient and remainder of A and B. Each expression in A and B is interpreted as a polynomial of x.
If the optional argument x is omitted, then x is equal to findsym(A,1) if findsym(A,1) is not empty. Otherwise, x is equal to findsym(B,1) if findsym(B,1) is not empty. Otherwise, each expression in A and B must evaluate to an integer. In this last case, the quorem(A,B) function computes the element-wise integer quotient and remainder of A and B.
If A is a scalar, then A is divided by each element of B.
If B is a scalar, then each element of A is divided by B.
When both and A and B are non-scalar, they must be the same size.
Examples
See Also
MTM[findsym], MTM[ldivide], MTM[Mod], MTM[rdivide], rem
Download Help Document