Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
LinearOperators[DEToOrePoly] - convert a linear ordinary differential equation to an OrePoly structure
LinearOperators[REToOrePoly] - convert a linear recurrence equation to an OrePoly structure
LinearOperators[OrePolyToDE] - convert an OrePoly structure to a linear ordinary differential equation
LinearOperators[OrePolyToRE] - convert an OrePoly structure to a linear recurrence equation
LinearOperators[FactoredOrePolyToDE] - convert a FactoredOrePoly structure to a linear ordinary differential equation
LinearOperators[FactoredOrePolyToRE] - convert a FactoredOrePoly structure to a linear recurrence equation
LinearOperators[FactoredOrePolyToOrePoly] - convert a FactoredOrePoly structure to a OrePoly structure
Calling Sequence
DEToOrePoly(eq,f)
REToOrePoly(eq,f)
OrePolyToDE(L,f)
OrePolyToRE(L,f)
FactoredOrePolyToDE(M,f)
FactoredOrePolyToRE(M,f)
FactoredOrePolyToOrePoly(M,var,case)
Parameters
eq
-
left hand side of a linear equation (either differential or recurrence)
f
function from eq, for example, f(x)
L
Ore operator
M
factored Ore operator
var
name of the independent variable
case
parameter indicating the case of the equation ('differential' or 'shift')
Description
The LinearOperators[DEToOrePoly] and LinearOperators[REToOrePoly] functions return an Ore operator K such that eq = K(f). The LinearOperators[OrePolyToDE], LinearOperators[OrePolyToRE], LinearOperators[FactoredOrePolyToDE], and LinearOperators[FactoredOrePolyToRE] functions apply the operator (L or M) to the function f. The LinearOperators[FactoredOrePolyToOrePoly] function converts an Ore polynomial in factored form, that is, a FactoredOrePoly structure, to an Ore polynomial in expanded form, that is, an OrePoly structure.
A completely factored Ore operator is represented by a structure that consists of the keyword FactoredOrePoly and a sequence of lists. Each list consists of two elements and describes a first degree factor. The first element provides the zero degree coefficient and the second element provides the first degree coefficient. For example, in the differential case with a differential operator D, FactoredOrePoly([-1, x], [x, 0], [4, x^2], [0, 1]) describes the operator .
An Ore operator is a structure that consists of the keyword OrePoly with a sequence of coefficients starting with the one of degree zero. The coefficients must be rational functions in x. For example, in the differential case with the differential operator D, OrePoly(2/x, x, x+1, 1) represents the operator .
Examples
See Also
DEtools[de2diffop], DEtools[diffop2de], LinearOperators
Download Help Document