Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
LinearOperators[IntegrateSols] - check for the existence of a primitive element, and perform accurate integration
Calling Sequence
IntegrateSols(L, x, case)
Parameters
L
-
an Ore operator
x
the name of the independent variable
case
a parameter indicating the case of the equation ('differential' or 'shift')
Description
The LinearOperators[IntegrateSols] function performs "accurate integration". That is, it solves the following problem. Let y satisfy L(y)=0 and g satisfy delta(g)=y, where delta means the usual derivative in the differential case and the first difference in the shift case. The routine builds an annihilator S for g of the same degree as that of L, and an operator K such that g=K(y) if both exist. Otherwise, it returns NULL.
An Ore operator is a structure that consists of the keyword OrePoly with a sequence of coefficients starting with the one of degree zero. The coefficients must be rational functions in x. For example, in the differential case with the differential operator D, OrePoly(2/x, x, x+1, 1) represents the operator .
There are routines in the package that convert between Ore operators and the corresponding Maple expressions. See LinearOperators[converters].
Examples
An annihilator for expr is
which can be written in non-factored form as
See Also
DEtools/integrate_sols, LinearOperators, LinearOperators[converters], LinearOperators[FactoredAnnihilator], LinearOperators[FactoredOrePolyToOrePoly]
References
Abramov, S. A., and van Hoeij, M. "Integration of Solutions of Linear Functional Equations." Integral Transforms and Special Functions. (1999): 3-12.
Download Help Document