Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
LinearAlgebra[StronglyConnectedBlocks] - compute the strongly connected blocks of a square Matrix
Calling Sequence
StronglyConnectedBlocks(M, opts)
Parameters
M
-
n x n square matrix with some sparsity
opts
options controlling the output
Description
The StronglyConnectedBlocks(M) function computes and returns a list containing the nonzero strongly connected blocks contained in the input Matrix M, i.e. [M_1, ..., M_r]. The strongly connected blocks are square sub-matrices of the input Matrix after a sequence of row and column exchanges have been performed to minimize the size of the blocks. Note that these sub-matrices do not contain all the entries present in the input Matrix, but rather only those needed to compute the determinant, characteristic polynomial, or eigenvalues of the Matrix. In addition, any zero blocks are not output.
In order for StronglyConnectedBlocks to provide a benefit, the input Matrix should have some sparsity. If the input Matrix is fully dense, the command will output a list containing only the input Matrix (without sparsity no break-down into blocks is possible).
For an input n x n Matrix M, if we let m = sum( Row/ColumnDimension(M_i), i=1..r ) for the output Matrix list [M_1, ..., M_r], then m <= n, where the inequality is needed for any zero blocks contained in the matrix.
The output blocks satisfy the following:
Determinant(M) is zero if m < n and product(Determinant(M_i), i=1..r) otherwise.
CharacteristicPolynomial(M,x) = x^(n-m) * product( CharacteristicPolynomial(M_i,x), i=1..r)
The option returnsingular is true by default, but when set to false, the block matrices will not be formed when the input Matrix is singular (i.e. has zero blocks). This is useful for efficient computation of a determinant (as a zero block means the determinant is zero, so there is no sense in forming the block matrices).
The option outputform is matrixlist by default, which returns a list of the strongly connected blocks in Matrix form as described above. If outputform is set to rowlist instead, it provides a list of the rows (columns) of the Matrix for each block.
Examples
See Also
LinearAlgebra[CharacteristicPolynomial], LinearAlgebra[Determinant], LinearAlgebra[RowDimension], Matrix
Download Help Document