Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
LinearAlgebra[Permanent] - compute the permanent of a square Matrix
Calling Sequence
Permanent(A)
Parameters
A
-
square Matrix
Description
The Permanent(A) function computes the permanent of A.
Similar to the Matrix determinant, the permanent P(A) of an n x n Matrix A can be defined in terms of a sum along any row or column, with unsigned minor expansion, by the following definition.
For any i in 1 .. n,
where
A_(i, j) is the i, jth minor of A given by
which is A with the ith row and jth column removed.
This definition differs from that of the Determinant only by the absence of alternating signs of the terms in the sum.
This function is part of the LinearAlgebra package, and so it can be used in the form Permanent(..) only after executing the command with(LinearAlgebra). However, it can always be accessed through the long form of the command by using LinearAlgebra[Permanent](..).
Examples
See Also
LinearAlgebra[Determinant], LinearAlgebra[Minor], Matrix
Download Help Document