Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
LinearAlgebra[Modular][Determinant] - compute the determinant of a square mod m Matrix
Calling Sequence
Determinant(m, A, meth)
Parameters
m
-
modulus
A
square mod m Matrix
meth
(optional) keyword for choice of method
Description
The Determinant function returns the mod m determinant of the input square mod m Matrix.
The following methods are available:
REF
(default) Compute using standard row-reduction (Row Echelon Form)
inplaceREF
Compute using standard row-reduction in-place in the input Matrix
RET
Compute using a Row Echelon Transformation approach
inplaceRET
Compute using a Row Echelon Transformation in-place in the input Matrix
Note that the two inplace methods available will destroy the data in the input Matrix, while the other methods will generate a copy of the Matrix in which to perform the computation.
The RET methods are likely to be faster for large matrices, but may fail if the modulus is composite.
This command is part of the LinearAlgebra[Modular] package, so it can be used in the form Determinant(..) only after executing the command with(LinearAlgebra[Modular]). However, it can always be used in the form LinearAlgebra[Modular][Determinant](..).
Examples
With inplaceREF the input Matrix is altered
A composite example where the RET method is unsuccessful
Error, (in LinearAlgebra:-Modular:-RowEchelonTransform) modulus is composite
Note that this is only because this is a case where the row echelon form exists, but the row echelon transform cannot be written in the required form.
See Also
LinearAlgebra/Details, LinearAlgebra[Modular], LinearAlgebra[Modular][Create], LinearAlgebra[Modular][RowEchelonTransform], LinearAlgebra[Modular][RowReduce]
Download Help Document