Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
LinearAlgebra[Generic][GaussianElimination] - perform Gaussian elimination on a Matrix
LinearAlgebra[Generic][ReducedRowEchelonForm] - compute the reduced row echelon form of a Matrix
LinearAlgebra[Generic][RREF] - compute the reduced row echelon form of a Matrix
Calling Sequence
GaussianElimination[F](A)
GaussianElimination[F](A,r,d)
ReducedRowEchelonForm[F](A)
ReducedRowEchelonForm[F](A,r,d)
ReducedRowEchelonForm[F](A,method=BareissAlgorithm)
ReducedRowEchelonForm[F](A,method=GaussianElimination)
RREF[F](A)
RREF[F](A,r,d)
RREF[F](A,method=BareissAlgorithm)
RREF[F](A,method=GaussianElimination)
Parameters
F
-
the domain of computation, a field
A
rectangular Matrix over values in F
r
name
d
Description
GaussianElimination[F](A) makes a copy of the Matrix A and reduces it to row echelon form (upper triangular form) with leading ones.
ReducedRowEchelonForm[F](A) makes a copy of the Matrix A and reduces it to reduced row echelon form.
RREF is an abbreviation for ReducedRowEchelonForm
The (indexed) parameter F, which specifies the domain of computation, a field, must be a Maple table/module which has the following values/exports:
F[`0`]: a constant for the zero of the ring F
F[`1`]: a constant for the (multiplicative) identity of F
F[`+`]: a procedure for adding elements of F (nary)
F[`-`]: a procedure for negating and subtracting elements of F (unary and binary)
F[`*`]: a procedure for multiplying two elements of F (commutative)
F[`/`]: a procedure for dividing two elements of F
F[`=`]: a boolean procedure for testing if two elements in F are equal
ReducedRowEchelonForm can use either Gaussian Elimination or the Bareiss algorithm to reduce the system to triangular form. If the Bareiss algorithm is used, the leading entries of each row are normalized to one and back substitution is performed, which avoids normalizing entries which are eliminated during back substitution.
The Bareiss algorithm requires the field to support exact division, i.e., it requires F to be an integral domain with the following operation:
F[Divide]: a boolean procedure for dividing two elements of F where F[Divide](a,b,'q') outputs true if b | a and optionally assigns q the quotient such that a = b q.
If the method is not given and the operation F[Divide] is defined, then the Bareiss algorithm is used, otherwise Gaussian Elimination is used.
Examples
See Also
Gaussian Elimination, LinearAlgebra[GaussianElimination], LinearAlgebra[Generic], LinearAlgebra[Generic][BareissAlgorithm], LinearAlgebra[ReducedRowEchelonForm]
Download Help Document