Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
LinearAlgebra[Generic][CharacteristicPolynomial] - compute the characteristic polynomial of a square Matrix
Calling Sequence
CharacteristicPolynomial[R](A)
CharacteristicPolynomial[R](A,x)
CharacteristicPolynomial[R](A,output=factored)
CharacteristicPolynomial[R](A,output=expanded)
CharacteristicPolynomial[R](A,method=Berkowitz)
CharacteristicPolynomial[R](A,method=Hessenberg)
Parameters
R
-
the domain of computation
x
name of the variable
A
square Matrix of values in R
Description
The (indexed) parameter R, which specifies the domain of computation, a commutative ring, must be a Maple table/module which has the following values/exports:
R[`0`] : a constant for the zero of the ring R
R[`1`] : a constant for the (multiplicative) identity of R
R[`+`] : a procedure for adding elements of R (nary)
R[`-`] : a procedure for negating and subtracting elements of R (unary and binary)
R[`*`] : a procedure for multiplying elements of R (binary and commutative)
R[`=`] : a boolean procedure for testing if two elements of R are equal
A must be a square (n x n) Matrix of values from R.
The optional parameter x must be a name.
CharacteristicPolynomial[R](A) returns a Vector V of dimension n+1 of values in R containing the coefficients of the characteristic polynomial of A. The characteristic polynomial is the polynomial V[1]*x^n + V[2]*x^(n-1) + ... + V[n]*x + V[n+1].
CharacteristicPolynomial[R](A,x) returns the characteristic polynomial as a Maple expression in the variable x. This option should only be used if the data type for R is compatible with Maple's * operator. For example, if the elements of R are represented by Vectors, or Arrays, then this option should not be used because Vector([1,2,3])*x is simplified to Vector([x,2*x,3*x]).
The optional argument output=... specifies the form of the output. In the case output=expanded, the characteristic polynomial is returned as one Vector encoding the characteristic polynomial in expanded form. In the case output=factored, the characteristic polynomial is returned as a sequence of the form m, [v1, v2, ...] where m is a non-negative integer, and v1, v2, ... are Vectors of elements of R representing (not necessarily irreducible) factors of the characteristic polynomial. The integer m represents the factor x^m. The implementation looks for diagonal blocks and computes the characteristic polynomial of each block separately.
The optional argument method=... specifies the algorithm to be used. The option method=Berkowitz directs the code to use the Berkowitz algorithm, which uses O(n^4) arithmetic operations in R. The option method=Hessenberg directs the code to use the Hessenberg algorithm, which uses O(n^3) arithmetic operations in R but requires R to be a field, i.e., the following operation must be defined:
R[`/`]: a procedure for dividing two elements of R
If method=... is not given, and the operation R[`/`] is defined, then the Hessenberg algorithm is used, otherwise the Berkowitz algorithm is used.
Examples
See Also
LinearAlgebra[CharacteristicPolynomial], LinearAlgebra[Generic], LinearAlgebra[Generic][BerkowitzAlgorithm], LinearAlgebra[Generic][HessenbergAlgorithm], LinearAlgebra[Modular][CharacteristicPolynomial]
Download Help Document