Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
GraphTheory[RandomGraphs][RandomNetwork]
Calling Sequence
RandomNetwork(n,p,options)
RandomNetwork(n,p,q,options)
RandomNetwork(V,p,options)
RandomNetwork(V,p,q,options)
Parameters
n
-
positive integer, larger than 1
p
real number between 0.0 and 1.0
V
list of vertices
q
options
sequence of options (see below)
Description
RandomNetwork(n,p) creates a directed unweighted network on n vertices. The larger p is, the larger the number of levels in the network.
RandomNetwork(V,p) does the same thing except that the vertex labels are chosen from the list V.
If the option acyclic is specified, a random acyclic network is created.
You can optionally specify q which is a real number between 0.0 and 1.0. The result is a random network such that each possible arc is present with probability q. The default value for q is 0.5.
If the option weights=m..n is specified, where m <= n are integers, the network is a weighted graph with edge weights chosen from [m,n] uniformly at random. The weight matrix W in the graph has datatype=integer, and if the edge from vertex i to j is not in the graph then W[i,j] = 0.
If the option weights=x..y where x <= y are decimals is specified, the network is a weighted graph with numerical edge weights chosen from [x,y] uniformly at random. The weight matrix W in the graph has datatype=float[8], that is, double precision floats (16 decimal digits), and if the edge from vertex i to j is not in the graph then W[i,j] = 0.0.
If the option weights=f where f is a function (a Maple procedure) that returns a number (integer, rational, or decimal number), then f is used to generate the edge weights. The weight matrix W in the network has datatype=anything, and if the edge from vertex i to j is not in the graph then W[i,j] = 0.
The random number generator used can be seeded using the randomize function.
Examples
See Also
AssignEdgeWeights, GraphTheory[DrawGraph], GraphTheory[DrawNetwork], GraphTheory[IsNetwork], GraphTheory[MaxFlow], RandomBipartiteGraph, RandomDigraph, RandomGraph, RandomTournament, RandomTree
Download Help Document