Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
FunctionAdvisor/singularities - return the poles and essential singularities of a given mathematical function
Calling Sequence
FunctionAdvisor(singularities, math_function)
Parameters
singularities
-
literal name; 'singularities'
math_function
Maple name of mathematical function
Description
The FunctionAdvisor(singularities, math_function) command returns the isolated poles and essential singularities of the function, if any, or the string "No isolated singularities". If the requested information is not available, it returns NULL.
A singularity of at is isolated when is discontinuous at but it is analytic in the neighborhood of . To compute the branch points of a mathematical function, that is, the non-isolated singularities related to the multivaluedness of the function, use the FunctionAdvisor(branch_point, math_function) command.
An isolated singularity can be removable, essential, or a pole. In the call FunctionAdvisor(singularities, math_func) only poles and essential singularities are returned.
An isolated singularity of at is removable when there exists a function such that for and is analytic at . The singularity is a pole when and both are analytic at and . The singularity is essential when it is neither removable nor a pole.
The following are examples of these types of isolated singularities
f1(z) = piecewise(z <> 2, sin(z), z = 2, 0);
f2(z) = 1/(z-3);
f3(z) = exp(1/z);
where has a removable singularity at , has a pole , and has an essential singularity at .
Examples
The value of the function at its singularities can typically be checked by direct evaluation or using eval.
See Also
DEtools[singularities], eval, FunctionAdvisor, FunctionAdvisor/branch_cuts, FunctionAdvisor/branch_points, FunctionAdvisor/topics, singular
References
Brown, J.W. and Churchill, R.V. Complex Variables and Applications. 6th Ed. McGraw-Hill Science/Engineering/Math, 1995.
Download Help Document