Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
DifferentialGeometry:-Tools[DGequal]
Calling Sequence
DGequal(S1, S2)
Parameters
S1, S2
-
two lists of vectors, differential forms, or tensors; two transformations; two Lie algebra data structures; or two representations
Description
Let S1 and S2 be two lists of vectors, differential forms, or tensors. If every element of S1 is in the span of S2 and every element of S1 is in the span of S2, then DGequal(S1, S2) returns true and otherwise false.
If the two transformations Phi1 and Phi2 have the same domain frame, range frame, and the same coordinate expressions, then DGequal(Phi1, Phi2) returns true and otherwise false. The command DGequal(Phi1, Phi2) computes the differences between the Jacobian matrices and the coordinate equations for the two transformations Phi1 and Phi2 and tests if these differences are zero.
This command is part of the DifferentialGeometry:-Tools package, and so can be used in the form DGequal(...) only after executing the commands with(DifferentialGeometry) and with(Tools) in that order. It can always be used in the long form DifferentialGeometry:-Tools:-DGequal.
Examples
Example 1.
First initialize a 4-dimensional manifold M with coordinates [x, y, z, w].
Show that the vector subspaces spanned by the lists of vectors S1 and S2 are the same.
Show that the subspaces of differential forms spanned by the lists of 2-forms S3 and S4 are not the same.
Example 2.
First initialize manifolds M and N with coordinates [x, y] and [u, v].
Show that the transformations Phi1 and Phi2 are the same.
Show that the transformations Phi3 and Phi4 are not the same without assuming that x > 0.
Example 3.
Define two Lie algebras data structures. Check that they are equal.
Example 4.
Define two representations of a Lie algebra and test for equality. First define the Lie algebra.
Define the representation space V.
Make a change of basis in the representation space.
The representations rho1 and rho2 are equivalent but they are not equal.
See Also
DifferentialGeometry, Tools, LieAlgebras, LieAlgebraData Representation, Transformation
Download Help Document