Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
DifferentialGeometry:-Tools[CanonicalBasis]
Calling Sequence
CanonicalBasis(S, T)
Parameters
S
-
a list of vectors, forms, or tensors
T
a list of vectors, forms, or tensors, the span of S must be contained in the span of T.
Description
The command CanonicalBasis(S, T) will return a list W of vectors, forms or tensors such that [i] span(S) = span(W) and [ii] the matrix whose rows are the coefficients of the elements of W with respect to T is in reduced row echelon form.
In the typical use of this command, S is a list of vectors or 1-forms on a manifold M and T is the standard basis for the tangent space or cotangent space of M.
The use of this command can dramatically simplify subsequent computations with the subspace spanned by S.
This command is part of the DifferentialGeometry:-Tools package, and so can be used in the form CanonicalBasis(...) only after executing the commands with(DifferentialGeometry) and with(Tools) in that order. It can always be used in the long form DifferentialGeometry:-Tools:-CanonicalBasis.
Examples
Define a manifold M with local coordinates [x, y, z, w].
Example 1.
Define a 3-dimensional subspace of vectors by the span of S and compute a simpler base for this subspace relative to the coordinate basis T for the tangent space of M.
We use the command DGEqual to check that the span of S and W agree.
Example 2.
We use the same vectors S as in Example 1 but reverse the ordering of the vectors in the basis S.
We note that the matrix of coefficients of W with respect to T is in reduced row echelon form.
Example 3.
Find a canonical basis for the space of 2-forms spanned by S3.
See Also
DifferentialGeometry, Tensor, Tools, DGequal, GenerateForms, GenerateTensors, GetComponents
Download Help Document