Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Tensor[TorsionTensor] - calculate the torsion tensor for a linear connection on the tangent bundle
Calling Sequences
TorsionTensor(C)
Parameters
C - a connection on the tangent bundle to a manifold
Description
Let M be a manifold and let nabla be a linear connection on the tangent bundle of M. The torsion tensor S of nabla is the rank 3 tensor (contravariant rank 1, covariant rank 2) defined by S(X, Y) = nabla_X(Y) - nabla_Y(X) - [X, Y]. Here X, Y are vector fields on M.
The connection nabla is said to be symmetric if its torsion tensor S vanishes.
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form TorsionTensor(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-TorsionTensor.
Examples
Example 1.
First create a 2 dimensional manifold M and define a connection on the tangent space of M.
Example 2.
Define a frame on M and use this frame to specify a connection C2 on the tangent space of M. While the connection C2 is "symmetric" in its covariant indices, it is not a symmetric connection.
See Also
DifferentialGeometry, Tensor, Christoffel, Physics[Christoffel], Connection, CovariantDerivative, Physics[D_], DirectionalCovariantDerivative
Download Help Document