Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Tensor[SymmetricProductsOfKillingTensors] - form all possible symmetric tensors of a given rank (linearly independent over the real numbers) from a list of symmetric tensors
Calling Sequences
SymmetricProducstOfKillingTensors(K, p, ptlist )
Parameters
K - a list of lists of Killing tensors K = [K_1, K_2, ...], where K_r is a list of Killing tensors of rank r on a manifold M
p - a positive integer.
ptlist - (optional) a list of points on the manifold M
Description
This program first computes all partitions [p1, p2, ... ] of the integer p, that is, all non-decreasing sequences p1, p2, ... with p1 + p2 + p3 + ... = p. Then, for each partition, all possible rank p symmetric tensors of the form T_1 &s T_2 &s T3 ..., where the tensor T_i is taken from the list K_i, are generated. From the totality of tensors so obtained a maximal set of linearly independent tensors (over the real numbers) is selected. Each symmetric tensor in the returned list is a Killing tensor if each of the K_i are.
The independent tensors are generated by a call to the DifferentialGeometry command DGbasis. For tensors with coefficients which are not rational functions, the DGbasis program may work faster using a Wronskian approach which requires the specification of a list of points on M.
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form SymmetricProductsOfKillingTensors(...) only after executing the commands with(DifferentialGeometry), with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-SymmetricProductsOfKillingTensors.
Examples
Example 1.
Calculate the rank 1 Killing tensors.
Calculate all the rank 2 and rank 3 Killing tensors generated by K1.
Check that all the tensors in S2 are indeed Killing tensors using the CheckKillingTensor command.
Calculate all the rank 3 Killing tensors generated by K1 and the metric g. We get the list S3 again because the metric is already a constant linear combination of the rank 1 Killing tensors.
See Also
DifferentialGeometry, Tensor, CheckKillingTensor, DGbasis, GenerateTensors, GetComponents, KillingTensors, SymmetrizeIndices
Download Help Document