Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Tensor[ParallelTransportEquations] - calculate the parallel transport equations for a linear connection on the tangent bundle or a linear connection on a vector bundle
Calling Sequences
ParallelTransportEquations(C, Y, Gamma, t)
Parameters
C - a list of functions of a single variable, defining the components of a curve on a manifold M, with respect to a given coordinate system
Y - a vector field defined along the curve C
Gamma - a connection on the tangent bundle to a manifold M or a connection on a vector bundle E -> M
t - the curve parameter
Description
Let M be a manifold and let nabla be a linear connection on the tangent bundle of M or a connection on a vector bundle E -> M. If C is a curve in M with tangent vector T, then the parallel transport equations for a vector field Y along C are then linear, first order ODEs defined by nabla_T(Y) = 0.
The procedure ParallelTransportEquations(C, Y, Gamma, t) returns the vector nabla_T(Y).
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form ParallelTransportEquations(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-ParallelTransportEquations.
Examples
Example 1.
First create a 2 dimensional manifold M and define a connection on the tangent space of M.
To define the parallel transport equations along C, we first define a curve on M by specifying a list of functions of a single variable t. We also define a vector field Y with coefficients depending on the curve parameter.
The program ParallelTransportEquations returns a vector whose components define the parallel transport equations.
To solve these parallel transport equations use the DGinfo command in the Tools package to obtain the coefficients of V as a set. Pass the resulting system of 1st order ODEs to dsolve.
Back substitute the solution into the vector field Y.
Example 2.
First create a rank 2 vector bundle E -> M dimensional manifold M and define a connection on E.
Define a curve C in M.
To solve these parallel transport equations use DGinfo to obtain the coefficients of V as a set. Pass the result to dsolve.
See Also
DifferentialGeometry, Tensor, Christoffel, Connection, CovariantDerivative, DGinfo, DirectionalCovariantDerivative
Download Help Document