Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Tensor[CanonicalTensors] - create various standard tensors
Calling Sequences
CanonicalTensors(keyword, spatial_type, signature, frameName)
Parameters
keyword - a keyword string, one of "Metric", "SymplecticForm", "ComplexStructure"
spatial_type - a string, either "bas" or "vrt", the spatial type of the tensor to be created
signature - required for the keyword "Metric", a pair of integers p (number of + 1), q (number of - 1) specifying the signature of the metric
frameName - (optional) a name or a string, the name of the manifold on which the tensor is to be defined
Description
This command will create the standard (flat) metric, symplectic form or complex structure.
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form CanonicalTensors(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-CanonicalTensors.
Examples
Example 1.
First create a 10 dimensional fiber bundle E over a 4 dimensional manifold M.
Create a metric on the tangent space of M with signature 3, 1.
Create a Riemannian metric on the fibers of E.
Create a symplectic form on M.
Create a complex structure on the fibers of E.
See Also
DifferentialGeometry, Tensor, GenerateForms, GenerateTensors
Download Help Document