Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
LieAlgebras[SubalgebraNormalizer] - find the normalizer of a subalgebra
Calling Sequences
SubalgebraNormalizer(h, k)
Parameters
h - a list of vectors defining a subalgebra h in a Lie algebra g
k - (optional) a list of vectors defining a subalgebra k of g containing the subalgebra h
Description
The normalizer n of h in k is the largest subalgebra n of k which contains h as an ideal. The normalizer of h always contains h itself.
SubalgebraNormalizer(h, k) calculates the normalizer of h in the subalgebra k. If the second argument k is not specified, then the default is k = g and the normalizer h of in g is calculated.
A list of vectors defining a basis for the normalizer of h is returned.
The command SubalgebraNormalizer is part of the DifferentialGeometry:-LieAlgebras package. It can be used in the form SubalgebraNormalizer(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-SubalgebraNormalizer(...).
Examples
Example 1.
First initialize a Lie algebra and display the Lie bracket multiplication table.
Calculate the normalizer of S1 = [e3] in S2 = [e1, e3, e4].
Calculate the normalizer of S3 = [e2, e4] in S4 = [e1, e2, e4, e5].
Calculate the normalizer of S5 = [e1, e2] in the Lie algebra Alg1.
See Also
DifferentialGeometry, LieAlgebras, Centralizer, MultiplicationTable, Query[ideal]
Download Help Document