Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Query[Indecomposable] - check if a Lie algebra is decomposable as a direct sum of Lie algebras over the real numbers
Query[AbsolutelyIndecomposable] - check if a Lie algebra is decomposable as a direct sum of Lie algebras over the complex numbers
Calling Sequences
Query(Alg, "Indecomposable")
Query(Alg, "AbsolutelyIndecomposable")
Parameters
Alg - (optional) the name of an initialized Lie algebra or a Lie algebra data structure
Description
A collection of subalgebras S1, S2, ... of a Lie algebra g defines a direct sum decomposition of g if g = S1 + S2 + ... (vector space direct sum) and [Si, Sj] = 0 for i <> j.
Query(Alg, "Indecomposable") returns false if the Lie algebra Alg is decomposable as a direct sum of Lie algebras over the real numbers, otherwise true is returned.
Query(Alg, "AbsolutelyIndecomposable") returns false if the Lie algebra Alg is decomposable as a direct sum of Lie algebras over the complex numbers, otherwise true is returned.
The command Query is part of the DifferentialGeometry:-LieAlgebras package. It can be used in the form Query(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-Query(...).
Examples
Example 1.
In this example we illustrate the fact that the result of Inquiry("Indecomposable") does not depend upon the choice of basis for the Lie algebra.
First we initialize a Lie algebra.
Now we make a change of basis in the Lie algebra. In this basis it is not possible to see that the Lie algebra is decomposable by examining the multiplication table.
Both Alg1 and Alg2 are seen to be decomposable.
Example 2
Here is the simplest example of a solvable Lie algebra which is absolutely decomposable but not decomposable.
First we initialize the Lie algebra and display the multiplication table.
The algebra is indecomposable over the real numbers.
The algebra is decomposable over the complex numbers.
The explicit decomposition of this Lie algebra is given in the help page for the command Decompose.
See Also
DifferentialGeometry, LieAlgebras, DecomposeAlgebra, LieAlgebraData, Query
Download Help Document