Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
LieAlgebras[LieAlgebraRoots] - find a root or the roots for a semi-simple Lie algebra from a root space and the Cartan subalgebra; or from a root space decomposition
Calling Sequences
LieAlgebraRoots()
Parameters
X - a vector in a Lie algebra, defining a root space
CSA - a list of vectors in a semi-simple Lie algebra, defining a Cartan subalgebra
RSD - a table, defining a root space decomposition of a semi-simple Lie algebra
Description
Let g be a Lie algebra and h a Cartan subalgebra. Let be a basis for . A root for g with respect to this basis is a non-zero -tuple of complex numbers such that (*) for some .
The set of which satisfy (*) is called the root space of g defined by and denoted by A basic theorem in the structure theory of semi-simple Lie algebras asserts that the root spaces are 1-dimensional.
The first calling sequence calculates the root for the given root space . If is not a root space, then an empty vector is returned.
The second calling sequence simply returns the indices, as column vectors, for the table defining the root space decomposition.
Examples
Example 1.
Use the command SimpleLieAlgebraData to initialize the simple Lie algebra This is a 15-dimensional Lie algebra of skew-Hermitian matrices.
The explicit matrices defining are given by the StandardRepresentation command.
The diagonal matrices determine a Cartan subalgebra.
We use the Query command to check that (2.4) is a Cartan subalgebra.
Find the root for the root space
Note that the command RootSpace performs the inverse operation to - given a root, the command returns the corresponding root space.
Example 2.
If the complete root space decomposition is given as a table, then the command returns the indices of that table as column vectors.
See Also
DifferentialGeometry, CartanSubalgebra, Query, RootSpace, RootSpaceDecomposition
Download Help Document