Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
LieAlgebras[GeneralizedCenter] - find the generalized center of an ideal
Calling Sequences
GeneralizedCenter(S1, S2)
Parameters
S1 - a list of vectors defining a basis for an ideal h in a Lie algebra g
S2 - (optional) list of vectors defining a basis for a subalgebra k in a Lie algebra g which contains h
Description
If h is an ideal of the Lie algebra g and h is also a subalgebra of k, then the GeneralizedCenter(h, k) is the ideal of vectors x in k such that [x,y] in h for all y in k. In particular, the generalized center of h in g is the inverse image of the center of the quotient algebra g/h with respect to the canonical projection map g -> g/h.
A list of vectors defining a basis for the generalized center of h in k is returned. If the optional argument S2 is omitted, then the default is k = g.
If the generalized center of h in k is trivial, then an empty list is returned.
The command GeneralizedCenter is part of the DifferentialGeometry:-LieAlgebras package. It can be used in the form GeneralizedCenter(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-GeneralizedCenter(...).
Examples
Example 1.
First initialize a Lie algebra.
Calculate the generalized center of [e1, e2] in the Lie algebra Alg1.
Calculate the generalized center of [e1, e4] in [e1, e2, e4, e5].
DifferentialGeometry, LieAlgebras, Center
Download Help Document