Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
LieAlgebras[DerivedAlgebra] - find the derived algebra of a Lie algebra
Calling Sequences
DerivedAlgebra(LieAlgName)
DerivedAlgebra(S)
Parameters
LieAlgName - (optional) name or string, the name of a Lie algebra g
S - a list of vectors defining a basis for a subalgebra of g
Description
The derived algebra of a Lie algebra g is the span of the set of vectors [x, y] for all x, y in g. It is an ideal in g.
DerivedAlgebra(LieAlgName) calculates the derived algebra of the Lie algebra g defined by LieAlgName. If no argument is given, then the derived algebra of the current Lie algebra is found.
DerivedAlgebra(S) calculates the derived algebra of the Lie subalgebra S (viewed as a Lie algebra in its own right).
A list of vectors defining a basis for the derived algebra of g (or S) is returned. If the derived algebra of g is trivial, then an empty list is returned.
The command DerivedAlgebra is part of the DifferentialGeometry:-LieAlgebras package. It can be used in the form DerivedAlgebra(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-DerivedAlgebra(...).
Examples
Example 1.
First we initialize a Lie algebra.
We calculate the derived algebra of Alg1.
We calculate the derived algebra of the subalgebra [e1, e2, e4].
See Also
DifferentialGeometry, LieAlgebras, BracketOfSubspaces, Series
Download Help Document