Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
LieAlgebras[AscendingIdealsBasis] - find a basis for a solvable Lie algebra which defines an ascending chain of ideals
Calling Sequences
AscendingIdealsBasis(Alg)
Parameters
Alg - (optional) Maple name or string, the name of an initialized Lie algebra
Description
Every solvable Lie algebra admits a basis [e_1, e_2, ..., e_n] such that the vectors [e_1, e_2, ..., e_k] form an ideal in [e_1, e_2, ..., e_(k + 1)]. AscendingIdealsBasis calculates such a basis.
Examples
Example 1.
First we initialize a 5 dimensional Lie algebra.
We can use the command Query/"Solvable" to check that this is a solvable Lie algebra.
Now we calculate a basis with the ascending ideals property.
The following two commands check, for example, that B[1..3] is an ideal in B[1..4].
The command Query/"AscendingIdealsBasis" will verify that the basis B has the ascending ideals property.
The ascending ideals property becomes apparent if we re-initialize the Lie algebra using the basis B (using the command LieAlgebraData).
See Also
DifferentialGeometry, LieAlgebras, BracketOfSubspaces, GetComponents, MultiplicationTable, Query
Download Help Document