Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
LieAlgebras[Adjoint] - find the ad Matrix for a vector in a Lie algebra
LieAlgebras[AdjointExp] - find the Ad Matrix for a vector in a Lie algebra
Calling Sequences
Adjoint(alg)
Adjoint(x, h, k)
AdjointExp(x)
Parameters
alg - (optional) the name of a Lie algebra g
x - a vector in a Lie algebra g
h - (optional) a list of vectors defining a basis for a subspace h in a Lie algebra g
k - (optional) a list of vectors defining a complementary basis in g to h
Description
Adjoint(x) is the linear transformation mapping g to g defined by Adjoint(x)(y) = [x, y] for all y in g. The linear transformation Adjoint(x) always defines a derivation on g.
The linear transformation AdjointExp(x) is the Lie algebra isomorphism defined by AdjointExp(x) = exp(Adjoint(x)) of the vector x in g.
Adjoint() returns the list of adjoint matrices for the basis vectors of the current algebra g.
Adjoint(alg) returns the list of adjoint matrices for the basis vectors of the algebra alg.
Adjoint(x, h) calculates the restriction of Adjoint(x) to the subspace h (h must be an Adjoint(x) invariant subspace).
Adjoint(x, h, k) calculates Adjoint(x) on the vector space quotient g/k with respect to the basis determined by h (k must be an Adjoint(x) invariant subspace).
The commands Adjoint and AdjointExp are part of the DifferentialGeometry:-LieAlgebras package. They can be used in the form Adjoint(...) and AdjointExp(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-Adjoint(...) and DifferentialGeometry:-LieAlgebras:-AdjointExp(...).
Examples
Example 1.
First initialize a Lie algebra.
AdjointExp(t*e4) is given by the Matrix exponential of Adjoint(t*e4).
Calculate the restriction of Adjoint(e3) to the subspace defined by [e1, e2].
Calculate the linear transformation induced by Adjoint(e4 + 2*e3) on the quotient of [e1, e2, e3, e4] by the subspace defined by [e3, e4] with respect to the basis [e1, e2].
See Also
DifferentialGeometry, LieAlgebras, LinearAlgebra[MatrixExponential]
Download Help Document