Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
JetCalculus[ProjectedPullback] - pullback a differential bi-form of type (r, s) by a transformation to a differential bi-form of type (r, s)
Calling Sequences
ProjectedPullback(Phi, omega)
Parameters
Phi - a transformation between two jet spaces Phi
omega - a differential bi-form of type (r, s) defined on the range jet space of Phi
Description
Every differential form on a jet space can be expressed as a sum of wedge products of 1-forms on M and contact 1-forms. A differential form omega is called a bi-form of degree (r, s) if it is a sum of wedge products of r 1-forms on M and s contact 1-forms. Alternatively, omega is of type (r, s) if omega(X_1, X_2, ... X_(r + s)) = 0 whenever more than r of the vector fields X_i are total vector fields or more than s of the vector fields X_i are vertical vector fields on J^k(E) ->M. The non-negative integer r is called the horizontal degree of omega. The non-negative integer s is called the vertical degree of omega.
Let E -> M and F -> N be two fiber bundles with dim(M) = m and dim(N) = n and let Phi: J^k(E) -> J^l(F) be a transformation. If Phi is the prolongation of a projectable transformation from E to F and omega is a differential bi-form of type (r, s) on J^l(F), then the pullback Phi^*(omega) is a differential bi-form of type (r, s) on J^k(E)-- that is, Phi^* is bi-degree preserving. In this special case where Phi is the prolongation of a projectable transformation, the pullback of a differential bi-form can be computed using the Pullback command found in the DifferentialGeometry package.
Suppose now that Phi: J^k(E) -> J^l(F) is the prolongation of a point transformation, a contact transformation, a differential substitution or a generalized differential substitution. (See AssignTransformationType for the definitions of these different types of transformations.) Then if omega is a differential bi-form of type (r, s) on J^l(F) the pullback Phi^*(omega) = eta_0 + eta_0 + eta_0 + ... where eta_i is a differential bi-form of type (r - i, s + i) on J^k(E). In these cases the command ProjectedPullback(Phi, omega) returns the type (r, s) bi-form eta_0.
Use ProjectedPullback to transform a Lagrangian bi-form to a new Lagrangian bi-form using any of the transformations listed in the previous bullet.
The command ProjectedPullback is part of the DifferentialGeometry:-JetCalculus package. It can be used in the form ProjectedPullback(...) only after executing the commands with(DifferentialGeometry) and with(JetCalculus), but can always be used by executing DifferentialGeometry:-JetCalculus:-ProjectedPullback(...).
Examples
First initialize several different jet spaces over bundles E1 -> M1, E2 -> M2, E3 -> M3. The dimension of the base spaces are dim(M1) = 2, dim(M2) = 1, dim(M3) = 3.
Example 1.
Define a transformation Phi1: E1 -> E2. This transformation is a projectable transformation and therefore pullbacks by the prolongation of Phi1 can be calculated directly using the Pullback command.
Pullback the contact 1-form Cv[1] on J1^(E2) to a contact form on J1^(E1)-- this can be done with either the Pullback command or the ProjectedPullback command.
Example 2
Define a point transformation Phi2: E1 -> E3 and prolong it to a transformation J^1(E1) -> J^1(E3).
Calculate the projected pullback of the type (1, 0) form Dp.
Calculate the projected pullback of the type (1, 1) form Dp ^ Cv[0].
To illustrate the definition of the projected pullback we re-derive this result using the usual Pullback command.
First convert omega from a bi-form to a form theta1.
Then pullback theta1 using prPhi2.
Then convert theta2 back to a bi-form and take the type [1, 1] part.
Example 3
Define a differential substitution Phi3: J^2(E2) -> E1 and prolong it to a transformation J^2(E3) -> J^2(E1).
Calculate the projected pullback of the type (1, 0) form 2*Dx + 3*Dy.
Calculate the projected pullback of the type (1, 0) form Cu[0, 0].
See Also
DifferentialGeometry, JetCalculus, DGinfo, Prolong, Pullback, PushforwardTotalVector, Transformation
Download Help Document