Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
DifferentialGeometry[IntegrateForm] - evaluate a p-fold iterated integral of a differential p-form
Calling Sequence
IntegrateForm(omega, integrationlimits)
Parameters
omega
-
a differential p-form on a p-dimensional manifold N
integrationlimits
a p-term sequence t1 = a1 .. b1, t2 = a1(t1) .. b1(t1), t3 = a3(t1, t2) .. b3(t1, t2), ..., where t1, t2, t3, ... are coordinates on N, defining a p-dimensional region in N
Description
With respect to the coordinates t1, t2, t3, ... on N, the p-form omega can be written as omega = f(t1, t2, t3, ...) dt1 &w dt2 &w dt3 .... The command IntegrateForm integrates the function f(t1, t2, t3, ...) over the p-dimensional region defined by t1 = a1 .. b1, t2 = a1(t1) ... b1(t1), t3 = a3(t1, t2) ... b3(t1, t2), ....
In many cases one is interested in integrating a p-form omega on a manifold M over an imbedding submanifold phi : N -> M. This is done in the DifferentialGeometry package by first computing the pullback theta = Phi^*(omega) with the Pullback command and then integrating the resulting p-form theta over N with the IntegrateForm command.
In many cases a more efficient alternative to the IntegrateForm command is provided by the VectorCalculus[int] command.
This command is part of the DifferentialGeometry package, and so can be used in the form IntegrateForm(...) only after executing the command with(DifferentialGeometry). It can always be used in the long form DifferentialGeometry:-IntegrateForm.
Examples
Example 1.
Integrate the 2-form (x^2 + 3*x*y)*dx &w dy over the triangle T with vertices (0, 0), (1, 0), and (0, 1).
To evaluate the double integral over T we note that for a point (x, y) in T the variable x ranges from 0 to 1 and, for a given x value, y ranges from 0 to 1 - x.
Example 2.
Compute the line integral of the 1-form omega = y^2*dx + z^2*dy + x*y*z*dz along the curve x = sin(t)*cos(t), y = sin(t)*cos(t), z = exp(t) from t = 0 to t = Pi.
Example 3.
Compute the surface integral of the 1-form omega = y^2*z^2*dx &w dy + x^2*y^2*dy &w dz + x^2*z^2*dx &w dz over the surface of the ellipsoid x^2 + y^2/4 + z^2/9 = 1.
We shall parameterize the surface of the ellipsoid with coordinates (theta, phi) and map x = cos(theta)*sin(phi), y = 2*sin(theta)*sin(phi), z = 3*cos(phi).
See Also
DifferentialGeometry, Pullback, Transformation, VectorCalculus[int]
Download Help Document