Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
GroupActions[InvariantVectorsAndForms] - calculate a basis of left and right invariant vector fields and differential 1-forms on a Lie group
Calling Sequences
InvariantVectorsAndForms(LG, options)
Parameters
LG - a module defining a Lie group
options - output = O, where O is a list of keywords chosen from: "LeftVectors", "LeftForms", "RightVectors", "RightForms"
Description
Let G be a Lie group with multiplication * and define diffeomorphisms L_a: G -> G and R_a: G -> G by L_a(g) = a*g and R_a(g) = g*a. A vector field X on G is left invariant if (L_a)_*(X_b) = X_(a*b) and right invariant if (R_a)_*(X_b) = X_(b*a). A differential form omega on G is left invariant if (L_a)^*(omega_(a*b)) = omega_(b) and right invariant if (R_a)^*(omega_(b*a)) = omega_(b).
The command InvariantVectorsAndForms(LG) returns up to a sequence of four lists XL, OmegaL, XR, OmegaR, where XL is a frame of left invariant vector fields, OmegaL is a coframe of left invariant 1-forms, XR is a frame of right invariant vector fields, and OmegaR is a frame of right invariant 1-forms.
The output option allows the user to dictate precisely which lists of invariant vector fields and forms are returned and the order in which they are returned. The default is output = ["LeftVectors", "LeftForms", "RightVectors", "RightForms"].
The command InvariantVectorsAndForms is part of the DifferentialGeometry:-GroupActions package. It can be used in the form InvariantVectorsAndForms(...) only after executing the commands with(DifferentialGeometry) and with(GroupActions), but can always be used by executing DifferentialGeometry:-GroupActions:-InvariantVectorsAndForms(...).
Examples
Example 1.
We calculate a basis for the invariant vector fields and forms for the 4 dimensional matrix group defined by the matrix M.
Create a local system of coordinates for the Lie group.
Create the Lie group module for the matrix group M using the LieGroup command.
Find a basis of left invariant vector fields and differential 1-forms.
Find a basis of right invariant vector fields.
Details for Example 1
We check various properties of these invariant bases of vector fields and forms. First note that the structure constants for the right invariant vector fields are the negatives of those for the left invariant vector fields.
The Lie derivatives of XL and OmegaL with respect to XR vanish:
Let us check explicitly the left invariance of the vector field XL[4].
Define points a and b and compute c = a*b.
Evaluate X at b and at c.
Pushforward X_b by muL . Since Y = X_c, the vector field X is invariant under left multiplication by muL.
Alternatively we can verify the left invariance of X using the second calling sequence for Pushforward to see that X is unchanged.
The left invariance of the form OmegaL[2] is similarly verified (by observing that theta = omega_c).
See Also
DifferentialGeometry, GroupActions, LieAlgebras, LieGroup, LieDerivative, Pushforward, Pullback
Download Help Document