Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
tensor[conj] - complex conjugation of expressions involving complex unknowns
Calling Sequence
conj(expression, [ [a1, a1_bar], [a2, a2_bar], ... ])
Parameters
expression
-
algebraic expression to conjugate
[[a1, a1_bar], [a2, a2_bar], ...]
(optional) list of pairs of conjugates (names of unknowns and their conjugates)
Description
The function conj(expr, [[a1,a1_bar], [a2,a2_bar], ... ]) computes the complex conjugate of the algebraic expression expr by making the following substitutions:
-I is substituted for I (this is the default if only one argument is specified).
For each pair of names, , , ai is substituted for ai_bar and ai_bar is substituted for ai.
The effect of these substitutions is to produce the complex conjugate of an expression which is assumed to contain only real-valued unknowns except for those which are listed in the second argument. The unknowns listed in the second argument are complex-valued and are replaced by their complex conjugate (unknown).
Examples
Suppose that the unknowns a and b are real-valued. Compute the conjugate of a+I*b:
Notice that since all of the unknowns in the expression `a+I*b' are real, you did not need to specify a second argument in the call to conj (alternatively, you could have passed the empty list: []).
Now suppose that b is complex-valued with complex conjugate b_bar. The conjugate of a+I*b is a-I*b_bar:
Now suppose that both a and b are complex-valued. Compute the complex conjugate of a+I*b:
See Also
conjugate, evalc, tensor
Download Help Document