Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Solving Abel's ODEs of the Second Kind, Class A
Description
The general form of Abel's equation, second kind, class A is given by:
Abel_ode2A := (y(x)+g(x))*diff(y(x),x)=f2(x)*y(x)^2+f1(x)*y(x)+f0(x);
where f2(x), f1(x), f0(x), and g(x) are arbitrary functions. See Differentialgleichungen, by E. Kamke, p. 26. There is as yet no general solution for this ODE.
Note that all ODEs of type Abel, second kind, can be rewritten as ODEs of type Abel, first kind, as explained in ?odeadvisor,Abel2C
Examples
1) f0(x) = f1(x)*g(x)-f2(x)*g(x)^2
This case can be solved as follows:
2) Another case which can be solved:
f1(x) = 2*f2(x)*g(x)-diff(g(x),x)
Although the answer for this case can be obtained using standard methods (an integrating factor is easily found), the use of symmetry methods can provide an explicit solution. The infinitesimals for this case are given by
To indicate the use of symmetry methods "at first", we can explicitly indicate an integration method (see dsolve); for instance, to use the canonical coordinates of the invariance group:
See Also
DEtools, dsolve, odeadvisor, and ?odeadvisor,<TYPE> where <TYPE> is one of: quadrature, linear, separable, Bernoulli, exact, homogeneous, homogeneousB, homogeneousC, homogeneousD, homogeneousG, Chini, Riccati, Abel, Abel2C, rational, Clairaut, dAlembert, sym_implicit, patterns; for other differential orders see odeadvisor,TYPES.
Download Help Document