Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
numtheory[pprimroot] - compute a pseudo primitive root
Calling Sequence
pprimroot(g, n)
pprimroot(n)
Parameters
g
-
positive integer or 0
n
integer greater than 1
Description
The function pprimroot(g, n) computes the next primitive root larger than g or, if n does not have primitive roots, computes a number which is not a root of order of any of the factors of .
Thus (in all cases), find an integer y, such that there is no for which when r is a divisor of greater than 1 and .
If only one argument n is present then this function will return the smallest primitive root of the number n. If there is no primitive root of n then this function will return the smallest integer y, such that there is no for which when r is a divisor of greater than 1 and .
The command with(numtheory,pprimroot) allows the use of the abbreviated form of this command.
Examples
See Also
numtheory[order], numtheory[primroot]
Download Help Document