Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
numtheory[mlog] - discrete logarithm
numtheory[index] - index
Calling Sequence
mlog(x, a, n)
mlog(x, a, n, 'c')
mlog(x, a, n, m)
mlog(x, a, n, 'c', m)
index(x, a, n)
index(x, a, n, 'c')
index(x, a, n, m)
index(x, a, n, 'c', m)
Parameters
x, a, n
-
integers
c
(optional) name of variable
m
(optional) equation of the form method=value
Description
The function mlog computes the discrete logarithm (also called the index) of x to the base a (mod n). It finds an integer y such that if possible, otherwise it returns FAIL.
When the optional argument c is provided, it is to be the fourth argument. If c is present in the calling sequence, the characteristic of the domain of the answer will be assigned to it. In this case all of the solutions to the logarithm are mlog(x, a, n) + k * c for any non-negative integer k.
When the optional argument m is provided, it must be the final argument in the calling sequence. This argument indicates the solution method that the user wishes to be employed. There are three possible choices for this parameter: method=shanks, which forces Shanks' Baby-Step Giant-Step algorithm to be employed in solving mlog(x, a, n); method=indcalc, which forces mlog(x, a, n) to employ the use of the Index Calculus method; or method=optimal, which automatically chooses the method based on the size of the problem. If no method is specified by the user, the default is method=optimal.
If x and n are coprime and a is a primitive root of n, then there is a unique solution of logarithm of x to the base a modulo phi(n).
Examples
mlog: "using Shanks method to compute log[a](x) mod p" mlog: "where n=10007, a=25, and x=1441."
mlog: "using the indexed calculus method to compute log[a](x) mod n" mlog: "where n=10007, a=5, and x=1441." mlog: "found new equation 1 out of 4" mlog: "found new equation 2 out of 4" mlog: "found new equation 3 out of 4" mlog: "found new equation 4 out of 4"
See Also
numtheory[primroot]
Download Help Document