Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
diffalg[reduced] - test if a differential polynomial is reduced with respect to a set of differential polynomials
Calling Sequence
reduced (p, F, R, code)
reduced (p, P, code)
Parameters
p
-
differential polynomial in R
F
differential polynomial or list/set of differential polynomials in R
R
differential polynomial ring
code
(optional) name; 'fully' or 'partially'
P
characterizable differential ideal
Description
Important: The diffalg package has been deprecated. Use the superseding package DifferentialAlgebra instead.
The function reduced returns true if p is reduced with respect to F or with respect to the equations of P. It returns false otherwise.
A differential polynomial p is said to be partially reduced with respect to a polynomial q if no proper derivative of the leader of q appears in p.
A differential polynomial p is said to be fully reduced with respect to a polynomial q if it is partially reduced with respect to q and if its degree in the leader of q is less than the degree of q in this leader.
A differential polynomial p is said to be reduced with respect to a set of differential polynomials F if it is reduced with respect to each element of F.
If code is omitted, it is assumed to be 'fully'.
If the second form of the function is used and P is a radical differential ideal defined by a list of characterizable differential ideals then the function is mapped over all the components of the ideal.
The command with(diffalg,reduced) allows the use of the abbreviated form of this command.
Examples
See Also
diffalg(deprecated), diffalg(deprecated)/differential_algebra, diffalg(deprecated)/Rosenfeld_Groebner, diffalg(deprecated)[equations], diffalg(deprecated)[leader], DifferentialAlgebra[Is]
Download Help Document