Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
diffalg[field_extension] - define a field extension of the field of the rational numbers
Calling Sequence
field_extension (transcendental_elements = L, base_field = G)
field_extension (relations = J, base_field = G)
field_extension (prime_ideal = P)
Parameters
L
-
list or set of names
G
(optional) ground field
J
list or set of polynomials
P
characterizable differential ideal
Description
Important: The diffalg package has been deprecated. Use the superseding package DifferentialAlgebra instead.
The function field_extension returns a table representing a field extension of the field of the rational numbers. This field can be used as a field of constants for differential polynomial rings.
For all the forms of field_extension, the parameter base_field = G can be omitted. In that case, it is taken as the field of the rational numbers.
The first form of field_extension returns the purely transcendental field extension of G.
The second form of field_extension returns the field of the fractions of the quotient ring G [X1 ... Xn] / (J) where the Xi are the names that appear in the polynomials of R and do not belong to G and (J) denotes the ideal generated by J in the polynomial ring G [X1 ... Xn].
You must ensure that the ideal (J) is prime, field_extension does not check this.
The third form of field_extension returns the field of fractions of R / P where P is a characterizable differential ideal in the differential polynomial ring R.
You must ensure that the characterizable differential ideal P is prime. The function field_extension does not check this.
The embedding differential polynomial ring of P must be endowed with a jet notation.
Examples
See Also
diffalg(deprecated), diffalg(deprecated)/differential_algebra, diffalg(deprecated)/differential_ring, diffalg(deprecated)/reduced_form, diffalg(deprecated)/Rosenfeld_Groebner, diffalg(deprecated)[equations], DifferentialAlgebra[RosenfeldGroebner]
Download Help Document