Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
diffalg[delta_polynomial] - return the delta-polynomial generated by two differential polynomials
Calling Sequence
delta_polynomial (p, q, R)
Parameters
p, q
-
differential polynomials in R
R
differential polynomial ring
Description
Important: The diffalg package has been deprecated. Use the superseding package DifferentialAlgebra instead.
The delta_polynomial command returns the delta-polynomial of p and q, that is
where phi and psi are the derivation operators of least order such that phi (up) = psi (uq) where up and uq are the leaders of p and q.
The delta-polynomial is sometimes called the cross-derivative.
The differential polynomials p and q must not belong to the ground field of R. Their leaders must be derivatives of the same differential indeterminate but not be derivatives of each other. Otherwise, the delta-polynomial is not defined and delta_polynomial returns an error message.
Delta-polynomials are constructed when dealing with partial differential polynomials to obtain regular differential systems.
The command with(diffalg,delta_polynomial) allows the use of the abbreviated form of this command.
Examples
See Also
diffalg(deprecated), diffalg(deprecated)/differential_algebra, diffalg(deprecated)/differential_ring, diffalg(deprecated)[leader], DifferentialAlgebra[Tools][DeltaPolynomial]
Download Help Document