Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
combinat[vectoint] - index of vector in canonical ordering
combinat[inttovec] - vector referenced by integer in canonical ordering
Calling Sequence
vectoint(l)
inttovec(m, n)
Parameters
l
-
list of non-negative integers
m
non-negative integer
n
Description
These two functions provide a one-to-one correspondence between the non-negative integers and all vectors composed of n non-negative integers.
The one-to-one correspondence is defined as follows. View all vectors of n non-negative integers as exponent vectors on n variables. Therefore, for each vector, there is a corresponding monomial. Collect all such monomials and order them by increasing total degree. Resolve ties by ordering monomials of the same degree in lexicographic order. This gives a canonical ordering.
Given a vector l of n non-negative integers, the corresponding integer m is its index in this canonical ordering. The function vectoint(l) computes and returns this integer m.
Given a non-negative integer m, the corresponding vector l is the m^th vector in this canonical ordering of vectors of length n. The function inttovec(m, n) computes and returns this vector l.
Here is a sample canonical ordering where n is 3:
Vector
Number
Monomial
[0,0,0]
0
1
[1,0,0]
x
[0,1,0]
2
y
[0,0,1]
3
z
[2,0,0]
4
x^2
[1,1,0]
5
x*y
[1,0,1]
6
x*z
[0,2,0]
7
y^2
...
The command with(combinat,vectoint) allows the use of the abbreviated form of this command.
Examples
See Also
combinat[decodepart], combinat[encodepart]
Download Help Document