Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
SumTools[IndefiniteSum][Rational] - compute closed forms of indefinite sums of rational functions
Calling Sequence
Rational(f, k, options)
Parameters
f
-
rational function in k
k
name
options
(optional) equation of the form failpoints=true or failpoints=false
Description
The Rational(f, k) command computes a closed form of the indefinite sum of with respect to .
Rational functions are summed using Abramov's algorithm (see the References section). For the input rational function , the algorithm computes two rational functions and such that and the denominator of has minimal degree with respect to . The non-rational part, , is then expressed in terms of the digamma and polygamma functions.
If the option failpoints=true (or just failpoints for short) is specified, then the command returns a pair , where
is the closed form of the indefinite sum of w.r.t. ,
is a list containing the integer poles of , and
is a list containing the poles of and that are not poles of .
See SumTools[IndefiniteSum][Indefinite] for more detailed help.
Examples
The following expression is rationally summable.
Check the telescoping equation:
A non-rationally summable example.
Compute the fail points.
Indeed, is not defined at , and is not defined at .
See Also
SumTools[IndefiniteSum], SumTools[IndefiniteSum][Indefinite]
References
Abramov, S.A. "Indefinite sums of rational functions." Proceedings ISSAC'95, pp. 303-308. 1995.
Download Help Document