Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
PolynomialIdeals[Add] - compute the sum of ideals
PolynomialIdeals[Multiply] - compute the product of ideals
PolynomialIdeals[Quotient] - compute the quotient of two ideals
Calling Sequence
Add(J, K, ..., options)
Multiply(J, K, ..., options)
Quotient(J, K, options)
Parameters
J, K
-
polynomial ideals, polynomials, or list or sets or polynomials
options
(optional) properties of the ideal and polynomial ring of the result
Description
The Add, Multiply, and Quotient commands compute ideal sums, products, and quotients respectively.
Let and be two polynomial ideals. The ideal sum is the ideal . The ideal product is the ideal . The ideal quotient is the set of all polynomials such that for all in .
Add and Multiply accept any number of arguments. The set of variables is extended to include the variables of each ideal. If the ideals cannot be put into a common polynomial ring, then an error is produced. Add and Multiply do not make any effort to simplify their results. The Simplify command can be used for this purpose.
The Quotient command accepts exactly two arguments. If both arguments are polynomial ideals, then the set of variables is extended to include the variables of both ideals. If one or more arguments are polynomials , then the Quotient command takes that to mean in an appropriate polynomial ring.
Examples
See Also
PolynomialIdeals, PolynomialIdeals[IdealInfo], PolynomialIdeals[Operators], PolynomialIdeals[PolynomialIdeal], PolynomialIdeals[Simplify]
Download Help Document