Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
MTM[gcd] - greatest common divisor of polynomials
Calling Sequence
gcd(A, B)
gcd(A, B, x)
[g, s, t] = gcd(A, B)
[g, s, t] = gcd(A, B, x)
Parameters
A
-
array or expression
B
x
variable
Description
The gcd function computes the greatest common divisor of two polynomials A and B.
The optional argument x specifies the dependant variable. If unspecified, findsym(A,1) or findsym(B,1) is used (whichever returns a non-NULL result first). Note that if the input polynomials are multivariate then, in general, s and t will be rational functions in variables other than x.
The extended Euclidean algorithm is applied by gcd to compute unique polynomials s, t and g in x such that s*A + t*B = g where g is the monic greatest common divisor of A and B. The results computed satisfy degree(s) < degree(B/g) and degree(t) < degree(A/g). The greatest common divisor g is returned as the function value.
If A and B are arrays, the gcd(A,B) function computes the element-wise greatest common divisor of A and B.
If A is a scalar and B is an array then gcd computes the greatest common divisor of A and each element of B.
Arrays A and B must be the same size.
Examples
See Also
gcd, MTM[lcm]
Download Help Document