Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
LinearFunctionalSystems[ExtendSeries] - extend the number of terms in the series solution of a linear functional system of equations
Calling Sequence
ExtendSeries(sol, deg)
Parameters
sol
-
formal series solution of the system which is the result of an invocation of LinearFunctionalSystems[SeriesSolution] or ExtendSeries
deg
positive integer; formal degree of the initial terms to extend to
Description
The ExtendSeries(sol, deg) function returns the initial terms of the formal series solution sol extended to the specified formal degree deg.
The specified solution sol must be in the form returned by LinearFunctionalSystems[SeriesSolution] or ExtendSeries. In other words, sol must have an attribute of the special form as described in LinearFunctionalSystems[SeriesSolution].
This function computes the additional terms of the series expansions using the invertible leading matrix of the matrix recurrence system corresponding to the linear functional system that was originally specified. This recurrence is the part of the special structure stored in the attribute of the given solution.
The result of ExtendSeries is returned in the same form as the result of LinearFunctionalSystems[SeriesSolution] (the list of series expansions in x, corresponding to vars). The order term (for example, ) is the last term in the series. The result involves arbitrary constants of the form _c1, _c2, etc., and it has an attribute of the special form as described in LinearFunctionalSystems[SeriesSolution].
This function is part of the LinearFunctionalSystems package, and so it can be used in the form ExtendSeries(..) only after executing the command with(LinearFunctionalSystems). However, it can always be accessed through the long form of the command by using the form LinearFunctionalSystems[ExtendSeries](..).
Examples
See Also
LinearFunctionalSystems[PolynomialSolution], LinearFunctionalSystems[RationalSolution], LinearFunctionalSystems[SeriesSolution]
Download Help Document