Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
LinearAlgebra[Modular][CharacteristicPolynomial] - Compute the characteristic polynomial of a square matrix mod p
Calling Sequence
CharacteristicPolynomial(m, A, lambda)
Parameters
m
-
modulus
A
square matrix
lambda
variable name to use for characteristic polynomial
Description
The CharacteristicPolynomial function computes the characteristic polynomial of a matrix mod m. Note that the matrix A need not have entries in the positive range , as the routine needs to make a copy of the matrix for the computation, and does so using Mod. Upon successful completion, the characteristic polynomial of A mod m in lambda is returned.
A number of different algorithms and implementations are in use, each with significantly different efficiency, so it is important to describe these here.
If m is a prime number with fewer than 100 digits (the digit limitation is present only to guarantee that the primality check is not too expensive) then the Hessenberg algorithm is used. This is a reduction-like routine, in which the matrix is 'reduced' to Hessenberg form, and the characteristic polynomial is computed from this form.
Furthermore, if the prime is sufficiently small so that the Modular package can work with a hardware datatype (either integer[] or float[8]), then an efficient external routine is used for the computation, making it quite fast.
In the event that the modulus m is not prime, or greater than 100 digits in length, the Berkowitz algorithm is used. Unlike the Hessenberg implementation, the Berkowitz implementation uses no external code, so it is noticeably slower for comparable problems, as demonstrated in the examples.
This command is part of the LinearAlgebra[Modular] package, so it can be used in the form CharacteristicPolynomial(..) only after executing the command with(LinearAlgebra[Modular]). However, it can always be used in the form LinearAlgebra[Modular][CharacteristicPolynomial](..).
Examples
Compute the characteristic polynomial using external Hessenberg and Berkowitz, and compare the timings.
First Hessenberg with prime modulus
Next Berkowitz with composite modulus
Factor of time faster for Hessenberg
See Also
LinearAlgebra/Details, LinearAlgebra[Modular], LinearAlgebra[Modular][IntegerCharacteristicPolynomial], LinearAlgebra[Modular][Mod]
Download Help Document