Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Finance[LocalVolatility] - compute the local volatilities given option prices
Calling Sequence
LocalVolatility(C, S, T, r, d, t, K)
Parameters
C
-
algebraic expression or a procedure; price of a European call option
S
list or Vector; values of the underlying asset
T
list or Vector; time (in years)
r
non-negative constant, algebraic expression or a yield term structure; risk-free rate
d
non-negative constant, algebraic expression or a yield term structure; dividend yield
t
name; variable representing time to maturity
K
name; variable representing the strike price
Description
The LocalVolatility command computes local volatilities of the underlying asset implied by the specified prices of European call options. It is assumed that the underlying asset evolves according to the stochastic differential equation
where
is the risk-free rate,
is the dividend yield,
is the local volatility,
and
is the standard Wiener process.
Note that the local volatility is a function of both time and the value of the underlying asset.
Let denote the undiscounted price of the European call option with strike price K and maturity time t drawn on the underlying asset. If P(t, K) is known for all and , then the local volatility sigma(S, t) of the underlying asset can be determined using the following equation:
The parameter C is the discounted price of the European call option given as a function of the maturity time t and the strike price K.
The parameter S specifies values of the underlying asset for which local volatilities are to be computed. The parameter T specifies times for which local volatilities are to be computed. The LocalVolatility command returns a matrix V such that is the local volatility of the underlying asset at time when the value of the underlying asset is .
The r and d parameters are the risk-free rate and the dividend yield. These parameters can be given in either the algebraic form or the operator form. If any of the parameters C, r, or d are given in the algebraic form, the parameters t and K must be specified to determine which variable represents time and which variable represents the strike price.
Compatibility
The Finance[LocalVolatility] command was introduced in Maple 15.
For more information on Maple 15 changes, see Updates in Maple 15.
Examples
First you obtain a symbolic expression for the local volatility in terms of time and underlying value.
Alternatively, you can compute values of the local volatility for any given value of S and T.
See Also
Finance[AmericanOption], Finance[BarrierOption], Finance[BlackScholesDelta], Finance[BlackScholesGamma], Finance[BlackScholesPrice], Finance[BlackScholesRho], Finance[BlackScholesTheta], Finance[BlackScholesVega], Finance[EuropeanOption], Finance[LatticePrice], Finance[LocalVolatility]
References
Gatheral, J., The Volatility Surface: A Practioner's Guide, (with foreword by Nassim Taleb), Wiley, 2006.
Hull, J., Options, Futures, and Other Derivatives, 5th. edition. Upper Saddle River, New Jersey: Prentice Hall, 2003.
Download Help Document